ทดสอบตัวอย่างที่ 2 บนพื้นหลักฐาน Indian 1975
- ตัวอย่างนี้จะดึงจากตารางฐานข้อมูลที่ผมเตรียมไว้ หมายเหตุว่าตารางฐานข้อมูลผมบูรณาการใหม่ จากเดิมที่เคยเก็บค่าพิกัดในระบบพิกัดฉากกับระบบภูมิศาสตร์แยกกัน ตอนนี้จับมารวมอยู่ด้วยกัน พร้อมมีฟิลด์ที่เก็บระบบพิกัดด้วย เวลาต้องการใช้งานก็ลากมาคำนวณได้เลย จากรูปด้านล่างคลิกที่ไอคอนรูปหมุด
- จะได้ตารางข้อมูลที่เก็บค่าพิกัดและค่าระดับ(ถ้ามี) พร้อมทั้งระบบพิกัด เมื่อเปิดมาแล้วผมลากเปลียนขนาดให้ดูใหญ่ว่าแต่ละคอลัมน์มีอะไรบ้าง และเลื่อนตารางไปท้ายสุด ดูบรรทัดที่ไฮไลท์เป็นสีน้ำเงินไว้ เราจะทดสอบโดยใช้ข้อมูลนี้ ระบบพิกัดของจุดนี้อยู่บนพื้นหลักฐาน “Indian 1975” บน UTM zone 48N ดูคอลัมน์ “Point Group” จะเห็นว่าจุดนี้เป็น “Projected Coordinate System” คือเป็นค่าพิกัดในระบบพิกัดฉากนั่นเอง
- จากนั้นให้คลิกเมาส์กดแล้วลากจุดค่าพิกัดนี้ไปทิ้งที่ช่องป้อนข้อมูล ผมทำสัญลักษณ์ตอนลากให้ดูง่ายๆ ว่ากำลังลากจุดที่มีค่าพิกัด
- เมื่อวางแล้วจะได้ค่าพิกัดและระบบพิกัดจะเปลี่ยนแปลงไปให้ตามจุดข้อมูล สังเกตว่าโซนยูทีเอ็มเดิม 47N จะเปลี่ยนไปให้ตามหมุดกลายเป็น 48N
- คลิกที่ปุ่มลูกศรเพื่อทำคำนวณสเกลแฟคเตอร์ จะได้ผลลัพธ์
- จบแล้วง่ายไหมครับ ก่อนหน้านี้ผมคำนวณ Elevation Scale Factor คำนวณด้วยมือ ส่วน Grid scale factor ใช้โปรแกรมอื่น ไม่ค่อยสะดวกเท่าไหร่ สุดท้ายก็มาเขียนโปรแกรมใช้เอง ได้ตรงกับใจที่ต้องการ
เบื้องหลังการคำนวณ
- เบื้องหลังการคำนวณจะเริ่มจากแปลงพิกัดของ “Indian 1975” ไปเป็นค่าพิกัดภูมิศาสตร์บนพื้นฐาน “WGS84” เพื่อเอาค่าพิกัด latitude/longitude ไปดึงเอาค่าความสูงจีออยด์ (N)
- มาลองย้อนรอยดูครับ ผมจะแปลงพิกัดโดยใช้โปรแกรม “Transform Coordinate” แล้วจากตารางฐานข้อมูลตัวเดิมผมจะลากจุดตัวนี้เข้าโปรแกรม
- โปรแกรมจะใส่ค่าพิกัดและจัดระบบพิกัดให้ตรงกับข้อมูล แล้วด้านซ้ายมือตั้งให้เป็นพื้นหลักฐาน WGS84 / UTM zone 48N แล้วคลิกลูกศรชี้ไปด้านซ้ายเพื่อทำการคำนวณจากขวามาซ้าย
- จะได้ค่าพิกัด “WGS84” ออกมา latitude = 14.1353282778, longitude = 102.8941568333 และจะเห็นค่าแลตติจูดบน “Indian 1975” latitude = 14.1336620802, longitude = 102.8977353234
- เปิดโปรแกรม “EGM” ทำการคำนวณค่าความสูงจีออยด์ ได้ค่า = -24.3452 m แทนค่าในสูตร h = H + N = 92.274 – 24.345 = 67.929 m อย่าลืม ความสูงนี้เทียบกับทรงรี WGS84
- ขั้นตอนต่อไปหาความสูงทรงรีของ “Everest 1830” ของพื้นหลักฐาน “Indian 1975” ด้วยไลบรารี Proj4 สูตรในโปรแกรมคอมพิวเตอร์ก็ประมาณดังที่แสดงไว้ด้านล่าง
x2, y2, z2 = transform(proj1, proj2, x1, y1, z1)
x2, y2, z2 = transform(proj1, proj2, 102.8941568333, 14.1353282778, 67.929)
- เราต้องการค่าพิกัด x2, y2, z2 จาก Proj1 ไปยัง Proj2 โดยที่ Proj1 = “WGS84 / Geographic” และ Proj2 = “Indian 1975 / Geographic” คำนวณแล้วได้ค่า z2 = 97.891 m ตัวนี้คือความสูงเมื่อเทียบกับทรงรี “Everest 1830”
- คำนวณหารัศมีทรงรี R – Mean Radius of Curvature จากสูตร เตรียมค่าสำหรับทรงรี “Everest 1830” a = 6377276.345, f = 1/300.8017, e² = 2f – f² = 0.00663784663, e’² = e²/(1-e²) = 0.00668220206 แลตติจูด (θ) = 14.1336620802
- R = 6377276.345 x √(1 – 0.00663784663) / (1 – 0.00663784663 x sin² (14.1336620802)) = 6358592.078
- Elevation Scale Factor(ESF) = R / (R + h) = 6358592.078 / (6358592.078 + 97.891) = 0.9999846052 ตรงกับที่คำนวณด้วยโปรแกรม “Point Scale Factor” ข้างต้น
- คำนวณ GSF ด้วยสูตร ɸ = 14.1336620802, ƛ = 102.8977353234, ƛ0 = 105
- การคำนวณด้วยมือ ผมใช้เครื่องคิดเลข
T = tan²(14.1336620802) = 0.06340692275
C = 0.00668220206 x cos²(14.1336620802) = 0.00628376769
A = (102.8977353234 – 105) x 3.141592654/180 x cos(14.1336620802) = -0.03558074351
e’² = 0.00668220206
แทนค่า T,C,A,e’2 ในสูตร จะได้ค่า k = = 1.00023704
- ดังนั้น Grid Scale Factor (GSF) = 1.00023704 ซึ่งตรงกับที่โปรแกรม “Point Scale Factor” คำนวณมาได้ข้างต้น
คำนวณค่า Combined Scale Factor (CSF)
- Combined Scale Factor = ESF x GSF = 0.9999846052 x 1.0002370396 = 1.0002216411
- ลองมาแปลงเป็น ppm (part per million) เพื่อดูว่าระยะทางหนึ่งกม.จะเพี้ยน (distortion) เท่าไหร่ นำตัวเลขมาลบด้วย 1 จะได้ 1.0002216411 – 1 = 0.0002216411 ทำให้เป็นตัวเลขหารด้วยหนึ่งล้าน(คือสิบยกกำลังหก) = 221.64 / 106 = 221.64 ppm
- แสดงว่าระยะทาง 1 กม. ระยะบนพิกัดฉากจะต่างกับระยะทางจริงๆบนพื้นโลก 221.6 mm. = 22.1 cm. ซึ่งไม่ถือว่าน้อย ถ้าวัดบนพื้นโลกได้ 1000 m จะวัดระยะทางบนระบบพิกัดฉากได้ 1000.222 m
- ก็ขอจบตอนแค่นี้ ตอนหน้ามาว่าเรื่อง “Line Scale Factor” คำนวณหาค่า CSF แบบเฉลี่ย ที่จะนำไปใช้งานกันจริงๆ