การออกแบบเส้นโครงแผนที่ความเพี้ยนต่ำ (Low Distortion Projection) ตอนที่ 2 (กรณีศึกษาออกแบบเส้นโครงแผนที่ความเพี้ยนต่ำสำหรับกรุงเทพมหานครและปริมณฑล)

ผมทิ้งช่วงเรื่องการออกแบบและประยุกต์ใช้เส้นโครงแผนที่ความเพี้ยนต่ำเป็นระยะเวลาเนิ่นนานพอสมควรเนื่องจากติดภารกิจไปทำงานต่างประเทศที่หาเวลาว่างนานๆได้ยาก ถ้าผู้อ่านไม่ได้ติดตามเรื่องนี้ตั้งแต่ต้นขอให้กลับไปอ่านหรือศึกษาได้ตามลิ๊งค์ตังต่อไปนี้

แนะนำการใช้เส้นโครงแผนที่ความเพี้ยนต่ำ (Low Distortion Projection)

และ

การออกแบบเส้นโครงแผนที่ความเพี้ยนต่ำ (Low Distortion Projection) ตอนที่ 1

เรื่องเส้นโครงแผนที่ความเพี้ยนต่ำเป็นเรื่องใหม่สำหรับประเทศไทย แต่ในต่างประเทศบางประเทศได้ประยุกต์ใช้งานมานานแล้ว ประโยชน์ของเส้นโครงแผนที่ความเพี้ยนต่ำเมื่อประยุกต์ใช้แล้วคือ ความต่างระหว่าง Ground Distance และ Grid Distance จะน้อยมากจนสามารถละเลยไปได้ ไม่เหมือนกับการใช้แผนที่ระบบพิกัดยูทีเอ็ม (UTM) ที่ค่าระยะทางบนพื้นโลกกับระยะทางบนแผนที่ต่างกันมาก (ตัวอย่างระยะทางประมาณ 1 กม. สองระยะทางนี้อาจจะต่างกันประมาณ 40-80 ซม.แล้วแต่พื้นที่) แต่ข้อเสียคือจะต้องมีการกำหนดใช้เส้นโครงแผนที่ความเพี้ยนต่ำแบ่งเป็นพื้นที่หรือเป็นโซน ที่ค่าพิกัดศูนย์กำเนิดจะต่างกันไป อาจจะทำให้ช่างสำรวจหรือผู้ใช้งานสับสนได้ แต่ข้อเสียนี้สามารถลดลงได้ถ้ารัฐหรือหน่วยงานของรัฐได้กำหนดและประกาศใช้เป็นทางการ โดยที่มีเอกสารและไฟล์ projection สำหรับแปลงพิกัดจากระบบพิกัด UTM ไปยังระบบพิกัดที่ใช้ LDP ในแต่ละโซน ผู้ใช้งานสามารถนำค่าพารามิเตอร์นี้หรือนำไฟล์ projection (ตัวอย่างเช่นไฟล์ prj ของ Shape file) ไปแปลงพิกัดได้บนโปรแกรมด้าน GIS หรือนำไปตั้งค่าบนเครื่องมืออุปกรณ์เช่น GNSS RTK ที่สามารถแปลงพิกัดได้แบบ real time

ตัวอย่างการประยุกต์ใช้งาน

ผมขอยกตัวอย่างอีกครั้งเช่นรัฐโอเรกอนของอเมริกาที่มีการออกแบบ LDP และประกาศใช้กันมานานแล้วดังรูปด้านล่าง 

พื้นที่รัฐโอเรกอน ประมาณครึ่งหนึ่งของประเทศไทย (ประมาณ 255,000 ตร.กม.)

ออกแบบเส้นโครงแผนที่ความเพี้ยนต่ำสำหรับกรุงเทพมหานครและปริมณฑล

ก็เป็นกรณีศึกษาก็แล้วกันนะครับ ผมจะออกแบบคร่าวๆให้พอมองเห็นภาพในภาพรวม ผมจะไล่ไปตามขั้นตอนที่ได้กล่าวไว้ในตอนที่ 1 และผมจะตั้งเป้าว่า ความเพี้ยน (Distortion) ไม่เกิน 20 ppm ก็มาดูกันว่าในพื้นที่ศึกษานี้ ค่าความเพี้ยนจะอยู่ในเกณฑ์นี้ไหม 20 ppm ก็คือระยะทางจริงๆบนพื้นโลก (Ground Distance)  1 กม. ระยะทางบนระนาบเส้นโครงแผนที่ LDP (Grid Distance) จะต่างกันไม่เกิน 20 มม. (20 มม. ต่อ 1 ล้านมิลมิเมตร หรือ 1 กม. นั่นเอง)

1.กำหนดพื้นที่ขอบเขตและหาค่าตัวแทนความสูงเฉลี่ยเหนือทรงรี (h0)

สำหรับขอบเขตก็ตามหัวข้อคือประกอบไปด้วยจังหวัดกรุงเทพมหานคร สมุทรปราการ นนทบุรี และปทุมธานี ขนาดพื้นที่ประมาณ 85 กม.ในแนวเหนือใต้ และกว้างประมาณ 75 กม. ในแนวตะวันออกตะวันตก หรือกล่าวโดยย่อพื้นที่ 85 กม. x 75 กม.

ต่อไปจะหาค่าระดับที่เป็นตัวแทนความสูงเฉลี่ยเหนือทรงรี (h0) ข้อมูลที่จะนำมาในการหาค่าเฉลี่ยจะใช้แผนที่ของกรมแผนที่ทหาร ปี 2553 ชื่อ “แผนที่แสดงค่าหมุดระดับในเขตกรุงเทพมหานครและปริมณฑล” เนื่องจากแผนที่ไม่สามารถหาแหล่งดาวน์โหลดทางการได้ จึงได้ดาวน์โหลดจากกระดานสนทนาจากเว็บไซต์ ที่ความคมชัดน้อย บางครั้งตัวเลขค่าระดับอาจจะแตกต่างค่าจริงไปบ้าง แต่ผมคิดว่าคงไม่ได้ทำให้การออกแบบ LDP กรณีศึกษานี้มีความด้อยลง  ผมนำแผนที่ชุดนี้มา ทำ rubber sheet เพื่อขึงพิกัดให้เข้ากับเส้นโครงแผนที่ UTM จากนั้นทำการ digitize จุดแต่ละจุดระดับลง ไม่ได้เอาทุกจุด แต่เลือกจุดประมาณ 10 กม.ต่อหนึ่งจุด ค่าระดับนี้เป็นค่าระดับน้ำทะเลปานกลาง (Orthometric Height) ซึ่งเราจะแปลงค่าระดับนี้ไปเป็นค่าระดับเหนือทรงรี (Ellipsoid Height) ในขั้นตอนต่อไป

จากนั้นทำการจัดเก็บจุดค่าระดับเป็นไฟล์ shape file กำหนดระบบพิกัดเป็นภูมิศาสตร์ (Geographic) เพื่อสะดวกต่อการใช้ค่าพิกัดนี้ในภายหลัง

นำไฟล์รูปที่ขึงแล้วและไฟล์จุดค่าระดับเข้าโปรแกรม QGIS ใช้ฟังก์ชั่น vector ทำการหา Basic Statistics for fields จำนวนจุดทั้งหมด 365 จุด ค่าระดับต่ำสุด 0.000 เมตร ค่าระดับสูงที่สุด  9.956 เมตร ค่าเฉลี่ย Mean 2.988 เมตร ผมจะนำค่าเฉลี่ยนี้ไปใช้งาน ค่านี้ขอใช้ตัวย่อเป็น H0 = 2.988 เมตร

ค่าระดับ H0 = 2.988 เมตร นี้จะนำมาแปลงเป็นความสูงเทียบกับทรงรี (h0) การประยุกต์ใช้ LDP ก็คือนำระนาบมาวางแตะค่าระดับนี้ โดยที่กำหนดโซนความกว้างทางราบ และช่วงค่าระดับความสูงที่ยังสามารถใช้ได้

ไดอะแกรมแสดงเส้นโครงแผนที่ความเพี้ยนต่ำที่ระนาบพิกัดฉากสัมผัสที่ความสูงเฉลี่ย h0

2.เลือกเส้นโครงแผนที่และกำหนด Central Meridian ที่จุดใกล้จุดศูนย์กลางพี้นที่

เส้นโครงแผนที่ที่นิยมนำมาทำ LDP มี 3 ประเภทคือ Transverse Mercator (TM), Lambert Conformal Conic (LCC 1SP) และ Oblique Mercator (OM) โดยที่แนวทางการเลือกถ้าพื้นที่ยาวไปในทิศทางตะวันออกตะวันตกเลือก LCC ถ้าพื้นที่ยาวไปในทิศทางเหนือใต้เลือก TM ถ้าพื้นที่เอียงไปในแนวทะแยงมุมกันทิศเหนือใต้และตะวันออกตะวันตกให้เลือก OM ในเคสนี้พื้นที่ยาวในทิศทางเหนือใต้ก็เลือกเป็น TM ที่เราคุ้นเคยกันดี

ต่อไปกำหนด Central Meridian (CM) ที่จุดกึ่งกลางของพื้นที่ (Centroid) ผมไปดาวน์โหลดไฟล์ shape file ที่รวมเอาเส้นขอบเขตของจังหวัดในประเทศไทย เมื่อโหลดมาแล้วเปิดใน QGIS จากนั้นทำการรวมพื้นที่ 4 จังหวัดนี้แบบ Dissolve เพื่อให้เหลือเส้น polygon เส้นเดียว แล้วจะนำไปหาจุดศูนย์กลางพี้นที่ โดยใช้ฟังก์ชั่นด้าน vector ของ Geometry tools เพื่อหา centroid ได้จุดมาดังรูปด้านล่าง

ได้ค่าพิกัดภูมิศาสตร์ของจุด Centroid ดังนี้ latitude: 13.852166 longitude: 100.629706 หน่วยเป็นดีกรี แปลงเป็นหน่วย DMS ได้ latitude: 31°51’7.8″N longitude: 100°37’46.94″E การวาง central meridian จะนิยมเลือกลิปดา (second) ที่เป็นจำนวนเต็ม ผมเลือก ค่าเต็มๆคือ Latitude = 31°51′ และ  CM =  100°38′

3.คำนวณหาค่าสเกลแฟคเตอร์ k0 ที่แกน Central Meridian

ก่อนหน้านี้ในข้อ 1. ผมได้ค่าระดับน้ำทะเลปานกลางของพื้นที่เฉลี่ย (H0) 2.988 เมตร จะนำค่านี้ไปแปลงเป็นค่าระดับเทียบทรงรี (h0) เตือนกันนิดว่าทรงรีที่เราใช้เป็น WGS84 การหา k0 ไม่ได้ยากตามสูตรนี้

Formula 1: Calculate Axis Scale Factor

การหาค่า h0 ก็ไม่ได้ยุ่งยากอะไรในทูลส์ Surveyor Pocket Tools ก็มีโปรแกรม Geoid Height ให้ใช้งาน h0 = H0 + N  โดยที่ N คือ Geoid Separation แต่จะก่อนคำนวณทีละขั้นตอนแบบนี้แบบแมนวลผมจะขอเสนอวิธีที่สะดวกกว่านั้น ผมจะใช้ทูลส์ชือ Init Design LDP ที่อยู่ใน Surveyor Pocket Tools มาช่วย

 คำนวณหาค่า k0 ด้วย Init Design LDP

เปิดโปรแกรม Init Design LDP จะเห็นหน้าตาโปรแกรมดังรูปด้านล่าง

ป้อนข้อมูลค่าระดับเฉลี่ย H0 = 2.988 เมตร ป้อนค่า Latitude  of project center =  13°51′ และ  Longitude of project center (CM )=  100°38′ ที่ได้จากข้อ 2.

จากนั้นคลิกที่ไอคอนลูกศรชี้ลง (เลข 3) เพื่อทำการคำนวณจะได้ผลลัพธ์ดังนี้

โปรแกรมจะคำนวณหาค่า h0 ให้และนำค่านี้ไปแทนในสมการด้านบน สุดท้ายจะคำนวณหา k0 = 0.999996 (แนะนำให้ใช้ทศนิยม 6 ตำแหน่ง) ผมพยายามขยับ CM ไปทางตะวันออกและตะวันตกครั้ง 15″ แต่ค่า k0 ยังเกาะที่ค่า 0.999996 นี้ ผมเลยเลือก CM = 100°38′

4.ตรวจสอบความเพี้ยน (Distortion) ตลอดทั้งพื้นที่

เป็นขั้นตอนที่สำคัญมาก คือถ้าเราเลือก Central Meridian มาหลายๆอันจะต้องเอาค่า k0 มาคำนวณหา Distortion

ค่า k คือ grid scale factor ค่า k นี้เราสามารถหาได้จาก สูตรด้านล่าง (เครดิตจาก Map Projection – A Working Manual ของ John P. Snyder หน้า 61)

Formula 2: Calculate Grid Scale Factor

สูตรก็เป็นสูตรเดียวที่เราใช้หา grid scale factor สำหรับ UTM เพียงแต่ค่า k0 ที่เราใช้จะเป็นค่า k0 ที่ได้จากการคำนวณด้วยโปรแกรม “Init Design LDP” คือ k0 = 0.99996, แทนค่า λ0 ด้วย 1.756383004 เรเดียน (λ0 คือ Central Meridian = 100°38′)

เลือกจุดทดสอบ

ผมเลือกจุดมาทั้งหมด 10 จุด ตำแหน่งให้อยู่ขอบๆ เป็นที่ทราบกันดี ว่าถ้าเป็นเส้นโครงแผนที่ TM ตัว grid scale factor จะเปลี่ยนจากด้านตะวันออก-ตะวันตกเท่านั้น (ไม่มีผลกับเลื่อนไปทางเหนือ-ใต้)

เรากำหนด CM ค่อนข้างจะกลางของพื้นที่ ดังนั้นจะมาดูกันว่าด้านขอบนั้นมี distortion จะยังอยู่ในเกณฑ์ไหม

การตรวจสอบจุดหาความเพี้ยนจะอาศัยการคำนวณจากสูตรที่ผมลงมาให้ก่อนหน้านี้ ลองมา workshop กันดูสักนิด  เริ่มจากจุดที่ 1  แต่จุดต่อๆไปผมจะใช้ทูลส์อีกตัวในชุด Surveyor Pocket Tools มาช่วย

Point No 1 Lat (ɸ)= 13.5079570 Long (λ) = 100.8674784 H = 6.394

คำนวณหาความสูงเทียบกับทรงรี

ได้ค่าh = H + N แทนค่าในสูตร h = 6.394 -29.9632 = -23.5692 เมตร

คำนวณ RG

RGเป็นค่าที่ขึ้นอยู่กับ latitude และพารามิเตอร์ของทรงรี (Ellipsoid) WGS84 ดังนี้

a = 6378137, e = 0.08181919084262149, e’ = 0.08209443794969568

แทนค่า

ใช้สูตรที่ 1 (formula 1) ได้ค่า  RG= 6359074.928

คำนวณค่า k

ใช้สูตรที่ 2 (formula 2) คำนวณได้ค่า T = 0.057708361, C = 0.006371791, A = 0.003973557 สุดท้ายคำนวณหาค่า k = 1.000003945

คำนวณหาค่าความเพี้ยน (Distortion)

แทนค่า k, RG และค่า h ลงไป

จะได้ค่า 7.65 x 10-6 เขียนให้ง่ายคือ 7.65 ppm (7.65 มม. ต่อหนึ่งล้านมม. ซึ่งก็เท่ากับ 7.65 มม.ต่อ 1 กม.) สรุปได้ว่าที่จุดที่ 1

Point No 1 Lat (ɸ)= 13.5079570 Long (λ) = 100.8674784 H = 6.394

มีค่าความเพี้ยน (Distortion) = 7.65 ppm จะเห็นว่ายังไม่เกินค่า 20 ppm ที่ผมตั้ง tolerance ไว้

สร้างเส้นโครงแผนที่ความเพี้ยนต่ำ

มาลองสร้างเส้นโครงแผนที่ความเพี้ยนต่ำโดยอาศัยทูลส์ Create LDP มาช่วย ทูลส์ตัวนี้นอกจากจะสร้าง LDP ได้แล้วยังสามารถตรวจเช็คค่าความเพี้ยนได้ทันที พร้อมทั้งแปลงค่าพิกัดจาก latitude/longitude ไปยังค่าพิกัดใน LDP ได้ เปิดทูลส์ Surveyor Pocket Tools คลิก Create LDP

ตามรูปบนผมสร้างเส้นโครงแผนที่ความเพี้ยนต่ำ โดยอันดับแรกเลือก Projection ก็คือ Transverse Mercator กำหนดใช้ Latitude of origin = 13°51′ และ Central Meridian = 100°38′ ผมกำหนดค่า False Northing (FN) = 500000 และ False Easting (FE) = 200000 หน่วยเป็นเมตร รับรองว่าค่าพิกัดขอบของพื้นที่จะไม่มีค่าติดลบ (พื้นที่ 85 กม. x 75 กม. หรือ 85000 ม. x 75000 ม.) และที่สำคัญมากคือค่า Scale factor at grid origin (k0) = 0.999996 ที่คำนวณไว้ตั้งแต่ตอนแรกๆ ค่า FN และ FE ผมหลีกเลี่ยงเลือกค่าที่ใกล้เคียงกัน และพยายามจะไม่ให้ค่ามากจนไปใกล้เคียงกับ UTM อันจะก่อให้เกิดความสับสน

คำนวณหาค่าความเพี้ยนด้วยทูลส์ Create LDP

ลองป้อนพิกัดจุดที่ 1 เข้าไปในกรอบที่ 2 ดังรูป

ทำการคำนวณด้วยการคลิกไอคอนรูปลูกศรจะได้ผลลัพธ์

ค่าความเพี้ยน 7.65 ppm ตรงกับที่เราคำนวณด้วยมือ ผมใช้โปรแกรมช่วยคำนวณมาทั้ง 10 จุดได้ผลลัพธ์ดังนี้

จะเห็นว่าจุด ที่ 3 มีความเพี้ยน (distortion) อยู่ที่ 13.18 ppm เพราะอยู่ชายขอบด้านตะวันออกสุด และจุดที่ 9 ค่าความเพี้ยนมากถึง 17.27 ppm อยู่เกือบขอบด้านตะวันตก แต่ยังไงก็ไม่เกิน 20 ppm ตัวเลขที่ตั้งไว้ ส่วนที่ลองจิจูดใกล้เคียงกับ CM ได้แก่จุดที่ 4 จะเห็นค่าความเพี้ยนเล็กมาก ขนาด -0.6 ppm แค่นั้นเอง

5.กำหนดพารามิเตอร์เส้นโครงแผนที่ความเพี้ยนต่ำให้เรียบง่าย

จากที่คำนวณและออกแบบมาตั้งแต่ต้น สามารถกำหนดพารามิเตอร์เส้นโครงแผนที่นี้ให้เรียบง่ายและอ่านง่ายได้ดังนี้
Projection: Transverse Mercator
Latitude of grid origin: 13° 51’ 00” N
Longitude of central meridian: 100° 48’ 00” E
Northing at grid origin: 500,000 m
Easting at central meridian: 200,000 m
Scale factor on central meridian: 0.999996 (exact)

ค่าพารามิเตอร์นี้ต้องติดไว้ข้างแผนที่ที่ใช้เส้นโครงแผนที่ความเพี้ยนต่ำนี้เสมอ

6.กำหนดหน่วยระยะทางและพื้นหลักฐานให้ชัดเจน

Linear unit:  Meter

Ellipsoidal datum :  World Geodetic System 1984 (WGS84)

Vertical datum:  Mean Sea Level (MSL)

System:  Bangkok Metropolis Low Distortion Projection Coordinate System

Zone:  Bangkok Metropolis Area

หน่วยระยะทางและพื้นหลักฐานต้องติดไว้ข้างแผนที่ที่ใช้เส้นโครงแผนที่ความเพี้ยนต่ำนี้เสมอ

จัดเก็บเส้นโครงแผนที่ความเพี้ยนต่ำเข้าฐานข้อมูล

ทูลส์ Create LDP นอกจากสามารถคำนวณหาค่าความเพี้ยนและแปลงพิกัดได้แล้ว ยังสามารถจัดเก็บเส้นโครงแผนที่ที่เราออกแบบ เข้าไปเก็บในฐานข้อมูล เพื่อความสะดวกสามารถนำมาใช้ในภายหลังได้ เมื่อเปิดโปรแกรม Surveyor Pocket Tools

คลิกที่ LDP Database จะเห็นฐานข้อมูลของ LDP สำหรับเครื่องผมแล้วมีฐานข้อมูลเก็บเส้นโครงแผนที่ความเพี้ยนต่ำที่ผมนำมาศึกษาดังนี้

กลับมาที่ทูลส์ Create LDP ดั้งเดิมเรามีเส้นโครงแผนที่ความเพี้ยนต่ำที่กำหนดไว้ดังนี้ ต้องการจัดเก็บให้คลิกที่ไอคอน LDP โปรแกรมจะถามยืนยันว่าต้องการจัดเก็บหรือไม่

จากนั้นกลับมาดูที่ LDP Database คลิกที่ไอคอนลูกศรวนเพื่อ “Refresh” จะเห็นฐานข้อมูลอัพเดทดังนี้ ผมวงสีแดงเน้นให้ดูพารามิเตอร์ที่ป้อนไป

แปลงพิกัดด้วยทูลส์ Transform Coordinates

เมื่อจัดเก็บฐานข้อมูลเส้นโครงแผนที่ความเพี้ยนต่ำแล้ว ต้องการแปลงพิกัดระหว่าง UTM/Geographic ไปยังเส้นโครงแผนที่ความเพี้ยนต่ำก็สามารถทำได้ดังตัวอย่างต่อไปนี้ เริ่มจากเปิดโปรแกรม Transform Coordinates มาก่อน

จากตัวอย่างคำนวณค่าพิกัดยูทีเอ็ม N = 1,561,926.0937, E = 639,807.9239 Zone: 47N บนพื้นหลักฐาน WGS84 ไปยังพื้นหลักฐาน Bangkok Metropolis (LDP) จะได้ค่าพิกัด N = 530,441.5826, E = 163,493.4658

เครดิตสูตรที่นำมาใช้

เส้นโครงแผนที่ความเพี้ยนต่ำจริงๆแล้วก็คือเส้นโครงแผนที่ตัวหนึ่ง ไม่มีอะไรพิเศษพิศดาร เพียงแต่ยกระนาบขึ้นมาแตะทึ่ค่าระดับเฉลี่ย h0 จุดนี้เองที่พิเศษเพราะว่าจะได้ค่า k0 ตัวใหม่ที่ไม่ใช่ 0.9996 แบบยูทีเอ็ม ดังนั้นสูตรที่นำมาใช้เพื่อคำนวณเส้นโครงแผนที่ความเพี้ยนต่ำ ทั้งการหา Grid Scale Factor หรือแปลงพิกัด ก็ยังเป็นสูตรของ Transverse Mercator

ในโปรแกรม Surveyor Pocket Tools ผม implement สูตรการคำนวณจาก Map Projection – A Working Manual by John P. Snyder เป็นโค้ดภาษาไพทอนเฉพาะการคำนวณที่เกี่ยวข้องกับ LDP ส่วนการแปลงพิกัดข้ามพื้นหลักฐานอื่นๆยังใช้ไลบรารีจาก Proj4 ถ้าสนใจสูตรของ Transverse Mercator ให้ไปดูได้ที่หน้า 60-63 ของตำราเล่มนี้

ผมก็ยังยืนยันว่าถ้าสามารถประยุกต์ใช้งาน LDP ได้เป็นโซนๆ จะช่วยทำให้งานสำรวจ ออกแบบ ก่อสร้างและงานแผนที่ ทั้งงานในสำนักงานและงานในสนาม สามารถคลี่คลายไปได้ สามารถแก้ปัญหาเรื่องระยะทางที่เคยต่างในสองโลก ได้กลับมาใกล้เคียงกันมากจนยอมรับได้ แต่ต้องมีหน่วยงานที่มากำหนดมาตรฐานแบ่งโซนพื้นที่และออกแบบเส้นโครงแผนที่ความเพี้ยนต่ำในแต่ละโซนได้เหมาะสมกับสภาพพื้นที่ ในกรณีนี้จะต่างกับค่าพิกัดลอยเพราะศูนย์กำเนิดลอยเป็นการตั้งขึ้นมาเองไม่มีมาตรฐาน ไม่สามารถแปลงพิกัดไปยังค่าพิกัดภูมิศาสตร์หรือยูทีเอ็มได้ 

เนื่องจากทิ้งท้ายบทความเรื่องออกแบบเส้นโครงแผนที่ความเพี้ยนต่ำ ตอนที่ 1 ไว้นานมาก จนมีผู้อ่านหลายท่านได้ทักท้วงมา ประกอบกับโปรแกรมทูลส์ที่ช่วยในการออกแบบก็เช่นกันพัฒนาไว้นานมาก แต่ไม่มีโอกาสได้นำเสนอวิธีการใช้งาน ก็ถือเป็นโอกาสอันดีได้นำเสนอวิธีการออกแบบเส้นโครงแผนที่ รวมถึงวิธีการใช้งานโปรแกรมด้วย พบกันตอนต่อไปครับ

 

6 thoughts on “การออกแบบเส้นโครงแผนที่ความเพี้ยนต่ำ (Low Distortion Projection) ตอนที่ 2 (กรณีศึกษาออกแบบเส้นโครงแผนที่ความเพี้ยนต่ำสำหรับกรุงเทพมหานครและปริมณฑล)”

  1. ขอบคุณครับ จะนำความรู้ที่ได้ ไปพัฒนางาน ต่อไป

Leave a Reply

Your email address will not be published. Required fields are marked *