การเล็งสกัดย้อน (Resection) ด้วยการวัดมุมภายใน ระยะทางและและมุมแบริ่งด้วยวิธีการคำนวณแบบ Least Squares (ตอนที่ 2)

 ตั้งสมการ Observation Equation

ขอทบทวน ค่า aik, bik  เรียกว่า  direction coefficients และ  cik, dik เรียกว่า distance coefficients

ในกรณีวัดมุมเล็งสกัดย้อนจากสมการด้านบนและเอาแทนที่ในสมการด้านล่าง

เขียนให้ดูง่ายดังนี้  zi  คือค่าอะซิมัทเริ่มต้น

เราจะมาคำนวณหาค่า aik, bik กันก่อน มาคำนวณที่จุด P ค่าพิกัด N = 193939.897 E = 110879.464 ไปสถานีหลักฐานจุดที่ 1  ที่มีค่าพิกัด N = 192315.290 E = 120383.500 คำนวณระยะทางได้ 9641.890 เมตร คำนวณหาอะซิมัทได้ 99°42’1.1″ ดังนั้น aik = aP1 = -sin( 99°42’1.1″) / (9641.890 * 100) * 3600 * 180/3.141592654 = -0.2109 second (มุมแปลงเป็นหน่วยฟิลิปดา ระยะทางแปลงหน่วยเป็น ซม.)

bik = bP1 = cos(99°42’1.1″) / (9641.890 * 100) * 3600 * 180/3.141592654 = -0.0360 second

เราจะฟอร์มสมการในรูปแบบ v + Bx = f โดยที่

v คือเมตริกเวคเตอร์ของ residual

B คือเมตริกของค่า coefficient ของมุม ระยะทาง

f คือเมตริกความต่างของค่าที่คำนวณและค่าที่รังวัด

ผมคำนวณหาค่าaik, bik ทุกๆการรังวัดมุมมาดังนี้

มาทบทวนดูสมการระยะทางดังนี้้

คำนวณหา cik = cP1 = cos(99°42’1.1″) = -0.1685

dik= dP1 = sin(99°42’1.1″) = 0.9857

คำนวณทุกการรังวัดระยะทางมาได้ดังตาราง

สมการสุดท้ายคือการวัดเล็งสกัด (Bearing intersection)

จากสมการ v + Bx = f มาพิจารณาฝั่งซ้าย v + Bx ก่อน ผมฟอร์มเป็นเมตริกดังนี้

มาดูเมตริก เป็นเมตริกแสดงความต่างระหว่างค่าที่คำนวณกับค่ารังวัด f = Computed – Observation มาดูตามตาราง น่าจะเข้าใจได้ง่าย ค่า diff ในตารางก็คือค่า f นั่นเอง โปรดระวังหน่วยมุมจะเป็นฟิลิปดา (second) หน่วยระยะทางใช้เป็นซม.

ยกตัวอย่างค่าของเมตริก f เริ่มจากการวัดเล็งสกัดย้อน จะใช้มุมอะซิมัทที่ได้จากการคำนวณมาเป็นตัวเริ่มต้น ค่าจากจุด P ไปสถานีหลักฐานที่ 1 จะได้ค่าความต่างเท่ากับ 0.0 ต่อไปจากจุด P ไปสถานีหลักฐานที่ 2 คำนวณได้ 119.5116959 จากมุมที่วัดมา 99° 42′ 1.1″ + 19° 48′ 41″ = 119.5116957 ได้ค่าความต่าง = (119.5116959 – 119.5116957) * 3600 =  0.0008 second

ที่ง่ายที่สุดคือวัดระยะทางจากจุด P ไปสถานีหลักฐานจุดที่ 1 ได้ 9641.795 เมตร ส่วนการคำนวณจากค่าพิกัด P เริ่มต้นมายังค่าพิกัดสถานีหลักฐาน 1 ได้ค่าคำนวณ = 9641.890 เมตร ความต่าง = (9641.890 – 9641.795) * 100 = 9.5 ซม.

สุดท้ายสามารถนำค่ามาเขียนเป็นเมตริก ดังนี้

v + Bx = f

จะเห็นว่าสมการนี้ติดค่า residual ของเมตริก v และเมตริก x ไม่สามารถคำนวณต่อไป แต่หัวใจของ least squares ตามชื่อเลยครับคือผลรวมค่ายกกำลังสองของ  residual ที่ได้ค่าน้อยที่สุด

ถ้าค่า weight หรือน้ำหนักของการรังวัดไม่เท่ากันจะต้องคูณน้ำหนักเข้าไปด้วย

จากสมการ v + Bx = f แทนค่า v = f – Bx ในสมการ

ค่า Φ จะมีค่าน้อยที่สุด ดังนั้นจะหาอนุพันธ์ (ดิฟ) โดยที่ให้ x มีค่าเท่ากับศูนย์

ที่นี้ก็จำง่าย Nx = t โดยที่ N = BTWB และ f = BTW

สุดท้ายสามารถหาค่าเมตริก x = N-1เมื่อได้ค่า x แล้วก็สามารถย้อนไปหาเมตริก residual (v) ได้ ตามสมการ v + Bx = f

ผลลัพธ์การคำนวณรอบที่ 1

ผมใช้ฟังก์ชั่นของ excel หาเมตริกได้ดังนี้


ได้เมตริก x คือค่าปรับแก้หน่วยเป็นซม. เอาพิกัดจุด P และมุมอะซิมัท เริ่มต้นมาปรับได้ดังนี้ N = 193939.897 – 0.090829= 193939.806 ค่า E = 110879.464 + 0.04695 =  110879.511 และค่ามุมอะซิมัท = 99°42’1.1″ – 2.1156″ = 99° 41′ 58.99″ (99.6997191)

ผลลัพธ์การคำนวณรอบที่ 2

เอาค่าพิกัดของจุด P ที่ได้จากรอบที่ 1 มาเป็นตัวเริ่มต้น พร้อมทั้งมุมอะซิมัทด้วย

ตั้งสมการเมตริก v + Bx = f ได้ดังนี้

แก้สมการ Nx = t ได้ดังนี้

จะได้เมตริก x ค่าใหม่ เอาพิกัดจุด P และค่าอะซิมัทมาปรับได้ดังนี้ N =193939.806  – 0.0016 = 193939.790  และ E = 110879.511 + 0.0085 = 110879.519  ค่าอะซิมัท = 99° 41′ 58.99″ + 0.137″ = 99°41′ 59.13″ (99.6997572)

ผลลัพธ์การคำนวณรอบที่ 3

ต่อไปฟอร์มรูปเมตริก v + Bx = f สังเกตว่าเมตริก B ค่าเปลี่ยนไปเล็กน้อยมาก

คำนวณหาเมตริก x จากสมการ Nx = t => x = N-1t

จะได้เมตริก x ค่าใหม่ เอาพิกัดจุด P และค่าอะซิมัทมาปรับได้ดังนี้ N = 193939.790- 0.0003 = 193939.787  และ E = 110879.519 + 0.0001 = 110879.521 ค่าอะซิมัท = 99° 41′ 58.99″ + 0.024″ = 99°41′ 59.15″ (99.6997639)

มาถึงตอนนี้จะเห็นว่าค่าปรับแก้ ในเมตริก x  น้อยมากอยู่ในระดับเศษส่วนของมิลลิเมตร ΔN = -0.285 cm ΔE = 0.152 cm ดังนั้นแสดงว่าค่าที่คำนวณมานั้น convergence แล้ว ดังนั้นผมสรุปว่าผลลัพธ์ดังนี้

ค่าพิกัดจุด P (Free Station)

N = 193939.787 E = 110879.521 ค่าอะซิมัทจากจุด P ไปสถานีหลักฐานที 1 = 99°41′ 59.15″

 ตรวจสอบผลลัพธ์การคำนวณด้วย Microsurvey StarNet

เพื่อให้มั่นใจว่าผลลัพธ์ที่ได้จะถูกต้อง ผมใช้ Microsurvey StarNet  มาเป็นตัวช่วย ข้อมูลสถานีรังวัดไม่เกิน ดังนั้นผมยังใช้เวอร์ชั่นทดลองใช้ได้อยู่ เมื่อเปิดโปรแกรมมาผมใช้เมนู Options -> Project ตั้งค่าดังนี้ เปลี่ยนหน่วยเป็นเมตรให้เรียบร้อยก่อนที่ Adjustment > Units > Linear > Meters

จากนั้นปรับ  standard error  ของกล้องวัดมุมและระยะทางให้สอดคล้อง ผมปรับระยะทาง Distance constant 4mm ปรับ Distance PPM = 20 ความหมายตัวนี้คือ 4mm ± 20mm/1,000,000 x L (m) ถ้าวัดระยะทาง 1000 เมตร error จะอยู่ประมาณ 24 mm (กล้อง Total Station สมัยปัจจุบันเรื่องระยะทางทำได้ดีกว่านี้มาก)

จากนั้นป้อนข้อมูลไปดังนี้ หมายเหตุว่า C = Control Point ไม่มีเครื่องหมาย ! !  ตามหลังแสดงว่าเป็นค่าเริ่มต้นหรือประมาณการ A = Angle, D = Distance และ B = Bearing ถ้าสนใจก็ไปดาวน์โหลดโปรแกรมของ Microsurvey StarNet  มาทดลองได้

แล้วคัดลอกข้อมูลด้านล่างแล้วไปวางลงในหน้า  input เพื่อลองคำนวณดูผลลัพธ์กันได้

# Resection 2D combined resection, distance and bearing intersection.

# Approximate coordinates for the unknown free station
#
C P 193939.897 110879.464

# Coordinates for the known stations
C 1 192315.290 120383.500 ! !
C 2 189545.730 118642.430 ! !
C 3 188084.770 112278.210 ! !
C 4 190640.940 109654.540 ! !
C 5 190044.860 108065.980 ! !
C 6 194455.370 110632.930 ! !
A P-1-2 19-48-41
A P-1-4 100-40-19
A P-1-5 116-8-36
A P-1-6 234-44-22

#Distance measurements
D P-1 9641.795
D P-3 6019.802
D P-5 4804.793

#Bearing measurements
B 1-P 279-41-59.5
B 3-P 346-33-52
B 5-P 35-50-34

จากนั้นใช้เมนู Run > Adjustment

สรุปสถิติการคำนวณดังนี้ จะเห็นว่ามีจำนวนข้อมูลรังวัดมา 10 (วัดมุมเล็งสกัดย้อน 4 มุม ระยะทาง 3 ระยะ วัดมุมเล็งสกัด 3 มุม จำนวนสิ่งที่ไม่รู้ค่า 2 ค่า คือค่าพิกัด  x,y ของจุด P

Adjustment Statistical Summary
==============================

Iterations = 2

Number of Stations = 7

Number of Observations = 10
Number of Unknowns = 2
Number of Redundant Obs = 8

 

Adjusted Coordinates (Meters)

Station N E Description
P 193939.788830 110879.521213
1 192315.290000 120383.500000
2 189545.730000 118642.430000
3 188084.770000 112278.210000
4 190640.940000 109654.540000
5 190044.860000 108065.980000
6 194455.370000 110632.930000

จะได้ค่าพิกัดจุด  P ดังนี้ N = 193939.789 E = 110879.521 ต่างจากที่ผมคำนวณมาเล็กน้อย อย่างแรกคือผมไม่ได้ใช้น้ำหนัก  weight  แต่ของ MicroSurvey Starnet บังคับใช้ โปรแกรมไม่ได้แสดงค่าสมการให้ดู จึงตรวจสอบไม่ได้ว่าเมตริกของ W เป็นอย่างไร อย่างที่สองคือการคำนวณวนลูปสองรอบเท่านั้น แสดงว่าอัลกอริทึ่มอาจจะใช้อนุกรมเทเลอร์ลำดับที่ 2 ด้วย ซึ่งผมใช้ลำดับเดียวจึงต้องวนลูปมากกว่า

เป็นอย่างไรบ้างครับ เรื่องคำนวณ  least squares adjustment ตอนสมัยเรียนมหาวิทยาลัยถือว่าเป็นวิชาที่ยากสำหรับนักศีกษา แต่ถ้ามีโอกาสได้ลองคำนวณดูไปทีละขั้นตอน สำคัญคือต้องลงมือเองด้วย จึงจะเข้าใจ บางทีรายละเอียดเช่นอนุกรมเทเลอร์ การหาค่าอนุพันธ์ อาจจะยาก ผมไม่ได้จำหรอกครับ เพียงแต่ติดก็กลับมาเปิดตำรา หลงๆลืมๆไปบ้างตามวัยของผม แต่ปัจจุบันความได้เปรียบคือตำราหาอ่านได้ง่ายในอินเทอร์เน็ต โปรแกรมช่วยคำนวณแบบ  Microsurvey Starnet หรือโปรแกรมค่ายอื่นๆก็มีมากมาย ที่จะมาช่วยทำให้การคำนวณง่าย แต่ถ้ามีพื้นฐานบ้างก็จะได้เปรียบ  ติดตามกันต่อไปครับ

Leave a Reply

Your email address will not be published. Required fields are marked *